Chem. Ber. 100, 1213 – 1229 (1967)

Paul Rademacher, Winfried Wiegräbe*) und Wolfgang Lüttke

Die Infrarot-Spektren einiger p-Toluolsulfonyl-Verbindungen

Aus dem Organisch-Chemischen Institut der Universität Göttingen und dem Institut für Anorganische Chemie der Universität München

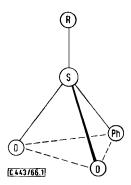
(Eingegangen am 18. Oktober 1966)

Die Schwingungsspektren von p-Toluolsulfochlorid, p-Toluolsulfonsäure-methylester, p-Toluolsulfonamid, N-Methyl-p-toluolsulfonamid und von N.N-Dimethyl-p-toluolsulfonamid werden, z. T. unter Zuhilfenahme der Frequenzverschiebungen isotop-substituierter Moleküle, zugeordnet.

Im Rahmen unserer spektroskopischen Untersuchungen an Phosphiniminen 1) und an Dimethylamin-Derivaten 2) wurden auch 15N-markiertes p-Toluolsulfonamid und die in der Dimethylaminogruppe mit 2H, 13C oder 15N markierten Isotopisomeren des N.N-Dimethyl-p-toluolsulfonamids dargestellt. N-Methyl-p-toluolsulfonamid und die am N-Atom deuterierten Derivate des p-Toluolsulfonamids und des N-Methyl-p-toluolsulfonamids sowie p-Toluolsulfochlorid und p-Toluolsulfonsäure-methylester vervollständigen das Untersuchungsmaterial soweit, daß eine Zuordnung der auftretenden Banden getroffen werden kann. Dies gilt auch für eine Reihe bisher strittiger Absorptionen, die aufgrund der isotopiebedingten Frequenzverschiebungen im Infrarot-Spektrum jetzt charakterisiert werden können.

Die Schwingungen der Moleküle p- H_3C - C_6H_4 - SO_2R (mit R = Cl, OC H_3 , N H_2 , N HCH_3 oder N(C H_3)₂) lassen sich in Schwingungen des *para*-disubstituierten Benzolrings und solche der Substituenten C H_3 und SO₂R unterteilen.

Für die hier im allgemeinen nicht zu diskutierenden Frequenzen des Benzolkerns und der ringständigen Methylgruppe darf man erwarten, daß sie sich nur geringfügig mit der Gruppe R ändern und dementsprechend auch nur verschwindend kleine Verschiebungen erleiden, wenn in R ein Atom durch sein schwereres Isotop ersetzt wird. Für die Schwingungen des aromatischen Kerns, die sich unter der Annahme von C_{2v} -Symmetrie auf die Klassen A_1 , A_2 , B_1 und B_2 verteilen, haben wir die gleiche Bezeichnungsweise wie *Schmid*, *Brandmüller* und *Nonnenmacher*³⁾ gewählt. Danach kennzeichnen v(CH), $\delta(CH)$ und $\gamma(CH)$ die CH-Valenzschwingungen und die ebenen bzw. nicht-ebenen CH-Deformationsschwingungen. Mit ω , δ und Γ werden ebene Ring-, ebene Deformations- und nicht-ebene Ringschwingungen bezeichnet. ω_X ,


^{*)} Jetzige Anschrift: Badische Anilin- & Sodafabrik AG, Ludwigshafen/Rh., Hauptlabor.

¹⁾ W. Wiegräbe, H. Bock und W. Lüttke, Chem. Ber. 99, 3737 (1966).

²⁾ P. Rademacher und W. Lüttke, unveröffentlicht.

^{3) 3}a) E. W. Schmid, J. Brandmüller und G. Nonnenmacher, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 64, 940 (1960); 3b) G. Nonnenmacher, Dissertat., Univ. Freiburg/Brsg. 1961.

 δ_X und Γ_X sind Schwingungen mit starker Beteiligung der Substituenten. Die Valenz-, Deformations- und Pendelschwingungen der ringständigen Methylgruppe bezeichnen wir als ν , δ bzw. $\rho(H_3C-C_6H_4)$.

Abbild. 1. Fünfmassenmodell Ph-SO₂-R

Um die für das verbleibende $Y-SO_2-R$ -Gerüst zu erwartenden Schwingungen ungefähr abzuschätzen, sei zunächst das Teilstück $Ph-SO_2-R$ betrachtet (Abbild. 1), in dem die aromatische Gruppe vereinfachend als starr, d. h. als "quasi-Massenpunkt", angesehen wird. Gemäß seiner Symmetrieklasse C_s sind neun Schwingungen zu erwarten, und zwar sechs in der Klasse A' und drei in der Klasse A''. Folgt man den Schwingungsformen für das tetraedrische Fünfmassenmodell $AB_2C_2^{4}$ (Symmetrieklasse C_2), so lassen sich folgende ungekoppelte Normalschwingungen erwarten:

Die Abkürzungen stehen wie üblich für:

- v: Valenz-(Streck-)Schwingung
- δ: Deformationsschwingung in der Ebene ("bending")
- ρ: Pendelschwingung (,,rocking")
- τ: Drill-(Torsions-)Schwingung (,,twisting")

Eine einzelne, scharf lokalisierte Phenyl-Substituent-Valenzschwingung ($v_2 = v(Ph-S)$) kann es bei Aromaten nicht geben. Vielmehr muß man nach den vorhandenen Analysen³) bei unsymmetrisch *para*-substituierten Benzolderivaten infolge von Schwingungskopplung mehrere substituentenabhängige Frequenzen erwarten. Es sind dies in der Klasse A_1 fünf ω_X , in der Klasse B_1 zwei δ_X und in der Klasse B_2 zwei Γ_X .

⁴⁾ J. Wagner, Z. physik, Chem., Abt. B 45, 69 (1939).

Die symmetrischen und die antisymmetrischen SO_2 -Valenzschwingungen, $v_s(SO_2)$ und $v_{as}(SO_2)$, lassen sich sehr einfach als die intensivsten Banden der Bereiche 1140 bis 1180 und 1300 bis 1380/cm identifizieren⁵⁾. Die Lage der SO_2 -Deformationsschwingung, $\delta(SO_2)$, ist vom Schwefeldioxid⁶⁾ bekannt (524.5/cm). Eine entsprechende Bande findet sich auch in den Spektren der Sulfonylderivate, so bei verschiedenen Verbindungen $Y-C_6H_4-SO_2X$ zwischen 540 und $610/cm^{7)}$. Die Pendelschwingung, $\rho(SO_2)$, der SO_2 -Gruppe gegenüber dem Restmolekül liegt beim Sulfurylfluorid bei 539/cm⁸⁾, beim Sulfurylchlorid bei 577/cm⁹⁾ und beim Methansulfonsäureester bei 530/cm¹⁰⁾, also jeweils etwas unterhalb der SO_2 -Deformationsschwingung. Wir ordnen daher von den beiden zwischen 520 und 575/cm beobachteten stets etwa gleich intensiven Banden die kürzerwellige der $\delta(SO_2)$ - und die längerwellige der $\rho(SO_2)$ -Schwingung zu, ähnlich den Angaben von Weigmann und Malewski¹¹⁾ für aromatische Sulfochloride.

Über die Zuordnung von v₅, v₆ und v₉ herrscht selbst bei einfachen Sulfonylverbindungen noch keine endgültige Klarheit, so daß genaue Erwartungsbereiche für diese Schwingungen nicht angegeben werden können. Sie dürften aber bei den hier untersuchten Substanzen unterhalb von 400/cm liegen und damit nicht mehr in den für uns IR-spektroskopisch zugänglichen Bereich fallen. Als Schwingungen der SO₂R-Gruppen bleiben somit nur noch die jeweilige S-R-Valenzschwingung und die inneren Schwingungen von R, soweit es sich bei R um ein mehratomiges Gebilde handelt, zu diskutieren. Diese sollen im folgenden zusammen mit den bei den einzelnen Substanzen beobachteten Besonderheiten erörtert werden.

1) p-Toluolsulfochlorid

Abbild. 2 zeigt das IR-Spektrum von p-Toluolsulfochlorid im Bereich von 400 bis 4000/cm. Ein Raman-Spektrum wurde von Ham und Hambly¹²⁾ mitgeteilt. Die Schwingungsbanden sind zusammen mit den getroffenen Zuordnungen in Tab. 1 aufgeführt. Da die S-Cl-Valenzschwingung bei 373/cm liegt¹²⁾, treten oberhalb von 400/cm, abgesehen von Kombinations- und Obertönen, nur die Frequenzen des Tosylrestes auf, ein Umstand, der für die Analyse der Schwingungsspektren bei den folgenden Substanzen sehr von Nutzen war.

⁵⁾ L. J. Bellamy, The Infra-red Spectra of Complex Molecules, S. 357, Methuen, London 1960; R. N. Jones und C. Sandorfy in W. West, Chemical Applications of Spectroscopy, S. 549, Interscience Publ. Inc., New York 1956; N. B. Colthup, L. H. Daly und S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, S. 309, Academic Press, New York 1964; s. auch: E. Merian, Helv. chim. Acta 43, 1122 (1960); E. A. Rohinson, Canad. J. Chem. 39, 247 (1961); H. Dorn, G. Hilgetag und A. Rieche, Angew. Chem. 73, 567 (1961).

⁶⁾ G. Herzberg, Molecular Spectra and Molecular Structure, S. 285, Bd. II, van Nostrand, New York 1960.

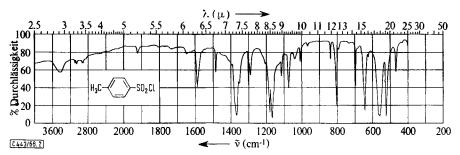
N. S. Ham, A. N. Hambly und R. H. Laby, Austral. J. Chem. 13, 443 (1960); G. Kresze, U. Uhlich, E. Ropte und B. Schrader, Z. analyt. Chem. 197, 283 (1963).

⁸⁾ G. R. Hunt und M. K. Wilson, Spectrochim. Acta [London] 16, 570 (1960).

⁹⁾ D. E. Martz und R. T. Lagemann, J. chem. Physics 22, 1193 (1954).

¹⁰⁾ A. Simon, H. Kriegsmann und H. Dutz, Chem. Ber. 89, 2378 (1956).

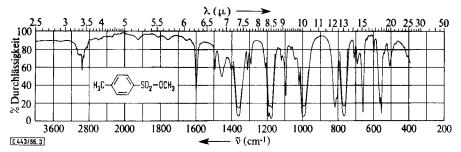
¹¹⁾ H.-J. Weigmann und G. Malewski, Spectrochim. Acta [London] 22, 1045 (1966).


¹²⁾ N. S. Ham und A. N. Hambly, Austral. J. Chem. 6, 135 (1953).

Tab. 1. Schwingungsspektrum von p-Toluolsulfochlorid (I geschätzte Intensität)

Infr KBr] <i>I</i>	Lösung		Lösun	g++)	Zuordnung
			85 219 280 350 373	s w s vw vs	$\begin{array}{ccc} \delta_X & B_1 \\ \omega_X & A_1 \\ \Gamma_X & B_2 \\ \text{v(SCI)} & - \end{array}$
0 4	480	2	480	m	$egin{array}{ccc} \delta \mathbf{x} & \mathbf{B_1} \\ \Gamma & \mathbf{B_2} \end{array}$
8 10	539 570	7 9	526 573	m s	ρ(SO ₂) .δ(SO ₂)
2			627	m	ω B ₁
8	652	7	650	w	$\omega_{\mathbf{X}}$ \mathbf{A}_{1}
	698	3			Γ B ₂
					$2 \cdot 373 = 746$
					$\omega_{\mathbf{X}} = \mathbf{A}_{1}$
	810	6	805	vw	$\gamma(CH)$ B ₂
					$\gamma(CH) = A_2$
	1016	_			$\gamma(CH)$ A_2
		3			$\delta(CH)$ A_1
			1001		ρ(CH ₃)
	1081	7	1081	S	ωχ Α ₁
	1110	2			530+567=1097
	1119	2			δ (CH) B ₁ 2.567=1134 od. 478+652=1130
	1151	3	1153	vs	2 50, 115. 50, 110, 602
		,		•••	530+632=1162
8	1172	10	1172	vs	$v_{s}(SO_{2})$
7	1188	7			$\delta(CH)$ A_1
sh					567 + 632 = 1199
2	1210	2	1212	w	$\omega_{\mathbf{X}}$ \mathbf{A}_{1}
					567 + 652 = 1219
					ω \mathbf{B}_1
4	1307	4	1220		$\delta(CH)$ B_i
4	1358	sh	1338	w	652+703=1355 od. $567+796=136$
8	1369	9	1379	m	$v_{as}(SO_2)$
-		-	1377	134	$\delta_{s}(CH_{3})$
1					ω \mathbf{B}_1
0					,
0	1442	2	1439	w	$\delta_{as}(CH_3)$
4	1489	3			ω Α ₁
6	1595		1595	vs	ω $B_1(A_1)$
1	1637	1			530 + 1121 = 1651 o. a.
0	1730	0			567 + 1174 = 1741 o. a.
1	1796	1			843 + 969 = 1812
2	1918	2			2.969 = 1938
0	2860	1) v(CH ₃)
]
sh		sh			
			2055		ν(CH)
	3068	2	3075	m	\ /
2					J
	KBr I O 4 8 10 2 2 5 1 2 2 5 1 3 3 sh sh sh 8 7 sh 4 4 4 8 sh 1 1 0 1 2 0 2 2 1 2 2 2 3 3 sh sh sh sh 1 0 0 1 2 0 2 2 3 3 3 3 3 3 3 3	0 4 480 8 539 10 570 2 8 652 4 698 1 2 794 7 810 2 1016 2 1040 5 1081 1 3 1119 sh sh sh 1151 sh 8 1172 7 1188 sh 2 1210 sh 1223 4 1291 4 1307 4 1358 8 1369 sh 1380 1 1397 0 0 1442 4 1489 6 1595 1 1637 0 1730 1 1796 2 1918 0 2860 2 2922 sh 3035 2 3055 sh 3068	CBr Lösung+) V [cm-1] I I V [cm-1] I I V V V V V V V V	KBr Lösung +	KBr Lösung + V [cm-1] I V [cm-1] I

^{*)} Raman-Werte von *Ham* und *Hambly* 12).


†) In CDCl₃ (4000 bis 1000/cm) bzw. in CS₂ (1000 bis 400/cm). ++) In Aceton.

Abbild. 2. 1R-Spektrum von p-Toluolsulfochlorid, in KBr

2) p-Toluolsulfonsäure-methylester

Von dieser Substanz wurde außer den IR-Spektren der reinen Flüssigkeit (Abbild.3) und der Lösungen in Schwefelkohlenstoff bzw. Tetrachloräthylen im Bereich 400 bis 4000/cm auch ein Raman-Spektrum mit Depolarisationsmessungen aufgenommen. Die Schwingungsbanden und deren Zuordnung sind in Tab. 2 aufgeführt.

Abbild. 3. IR-Spektrum von p-Toluolsulfonsäure-methylester, rein flüssig

Neben den Frequenzen des Tosylrestes, die sich in Analogie zum p-Toluolsulfochlorid zwanglos auffinden lassen, treten im IR-Spektrum zwei sehr starke Banden bei 766 und 991/cm und schwächere in der Gegend um 1450/cm sowie zwischen 2840 und 3000/cm auf. Die beiden ersteren sind zweifellos der S—O- und der C—O-Valenzschwingung zuzuordnen; die entsprechenden Banden des Methansulfonsäure-methylesters befinden sich bei 727 und 1001/cm¹⁰. Die anderen Absorptionen sind ihrer Lage nach Methyl-Deformations- und Valenzschwingungen.

Im Lösungsspektrum erscheint die v(C-O)-Bande um 11/cm kurzwellig verschoben bei 1002/cm. Diesem Umstand ist es zu verdanken, daß jetzt auch eine im Spektrum der reinen Substanz verdeckte, schwächere Absorption bei 982/cm zu erkennen ist, die sich einer Pendelschwingung der O-Methylgruppe zuordnen läßt.

Von denjenigen Banden unterhalb von 550/cm, die sich nicht dem aromatischen Ring zuschreiben lassen, können zwei (538 und 327/cm) als Kombinationstöne gedeutet werden. Die depolarisierte Raman-Bande bei 395/cm ordnen wir versuchsweise der Torsionsschwingung $v_9 = \tau(Ph-SO_2-O)$, die Banden bei 507 und 265/cm der Deformationsschwingung $v_5 = \delta(Ph-S-O)$ bzw. der Pendelschwingung $v_6 = \rho(Ph-S-O)$ zu.

Tab. 2. Schwingungsspektrum von p-Toluolsulfonsäure-methylester (I geschätzte Intensität, ρ Depolarisationsgrad)

rein flü:		ifrarot Lösung	<u>z</u> *)		Rama n flüs			Zuordnung		
ν [cm ⁻¹		ν [cm ⁻¹		ν [cm ⁻¹]		-	ρ		230070770715	
				173 214 265 291 327 364	1 1 1 4 0	0 0 0	0.45 0.65 0.45 0.3 	გ ც ც	$\begin{bmatrix} x & B_2 \\ x & B_1 \\ (Ph-S-O) ? \\ 0x & A_1 \\ 91-660 = 331 \\ x & B_2 \end{bmatrix}$	
403 472 507 538	2 0 3 1	503 534	3 2	395 474 506	1 1 0	Ċ).85).8).55	1 8 2	$(Ph - SO_2 - O)$ (Ph - S - O) (Ph - S - O) (14 + 327 = 541	
554 565 598 636	7 5 2 1	556 562 596	7 5 2	556 568 635	1 1 4)).85).9	δ	$6(SO_2)$ $6(SO_2)$ 165 + 327 = 592 165 + 327 = 592	
660 688 707 766 805 818 838	7 3 2 9 5 6 sh	660 687 704 761 802 815 835	6 3 2 10 4 6 sh	661 688 706 770 807 820	1 0 0 5 1 2	0),5),45),45),45),1 lp?	6 2 I V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
991 1019 1039 1068 1097 1105	10 4 2 0 5 sh	982 1002 1020 1036 1066 1098 1104	6 9 4 sh 0 4 sh	995 1020 1046 1096	1 0 0	I	0.5	δ 6 5	$S(O-CH_3)$ $S(O-CH_3)$ S(CH) $S(CH)$ $S($	
1121 1177 1189 1210 1217 1291 1308	2 10 8 3 sh 3	1119 1178 1189 1209 1216 1290 1306	2 10 9 3 sh 3 3	1172 1190 1212 1295 1309	10 3 1	;)).1 o).1 —	\ 6 4	B_1 B_2 (SO ₂) B_3 (CH) A_1 D_2 A_1 D_3 A_1 D_4 D_4 D_4 D_5 D_4 D_5 D_6 D_6 D_6	
1346 1359 1380 1399 1440 1454	sh 10 sh 3 sh 4	1352 1375 1393 1436 1448	6 8 3 sh 3	1361 1383	1 2	(ip),5	3 3 3	$C_{as}(SO_2)$ $C_{bs}(H_3C - C_6H_4)$ $C_{as}(H_3C - C_6H_4)$ $C_{as}(H_3C - C_6H_4)$ $C_{as}(O - CH_3)$	
1459	sh	1456	3	1457	1	(0.85) ()(ОСП3)	
1495 1599 1655 1757 1811 1923 2587	3 5 1 1 0 1	1491 1597 1646 1757 1800 1913	2 5 1 1 2	1496 1599	0 10		(dp) 0.8	c	$\begin{array}{ccc} \omega & A_1 \\ \omega & B_1 & (A_1) \\ 538 + 1121 & = 1659 \text{ o. a} \end{array}$	
	•			2742	1	1	o c			

ein flüs		Infrarot Lösun	g*)		aman flüssi		Zuordnung	
[cm ⁻¹]	I	v [cm	1] <i>I</i>	ν [cm ⁻¹]	1	ρ		
2841	2	2840	2	2845	2	р	ν _s (H ₃ C-C ₆ H ₄)	
2895	sh	2893	2					
2923	3	2922	3	2927	6	p	$ \begin{array}{c} \nu_{as}(H_3C - C_6H_4) \\ \nu_{as}(O - CH_3) \end{array} $	
2957	4	2953	4	2958	5	p	(0, 611)	
2980	sh	2982	sh	2983	2	_	Vas(U-CH3)	
		2998	2				•	
010	3	3006	sh	3012	1)	
3035	3	3030	2	3040	2	_	(CIII)	
3065	3	3065	1	3069	8	р	} ν(CH)	
090	2	3085	sh			•	l	
				3151	0	(dp)	,	
				3192	0	p		

Tab. 2 (Fortsetzung)

3) p-Toluolsulfonamid

Neben den Frequenzen des Tosylrestes, die sich auch hier meist ohne Schwierigkeit identifizieren lassen, gilt es, beim p-Toluolsulfonamid die S-N-Valenzschwingung und die Schwingungen der Aminogruppe zu lokalisieren. Letztere lassen sich als symmetrische und antisymmetrische Valenzschwingung, $\nu_s(NH_2)$ bzw. $\nu_{as}(NH_2)$, als ebene Deformationsschwingung, $\delta(NH_2)$, als Pendelschwingung, $\rho(NH_2)$, als nichtebene Deformationsschwingung, $\gamma(NH_2)$, und als Drillschwingung (twisting), $\tau(NH_2)$, charakterisieren.

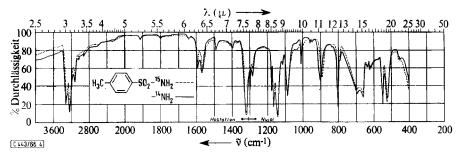
Über die Lage von S-N-Valenzschwingungen herrscht noch keine Klarheit. Erst kürzlich fanden *Tanaka* und *Tanaka*¹³⁾ für eine Reihe aromatischer Sulfonamide charakteristische Absorptionen zwischen 830 und 950/cm, die sie als v(S-N)-Frequenzen deuteten. Um über diese Absorptionen sowie über die NH₂-Frequenzen eindeutigen Aufschluß zu erhalten, haben wir außer dem gewöhnlichen auch das ¹⁵N- und das in der Aminogruppe deuterierte Tosylamid untersucht, denn bekanntlich erfahren bei der isotopen Substitution nur solche Schwingungen nennenswerte Frequenzverschiebungen, bei denen sich die betreffenden Atome wesentlich mitbewegen ¹⁴⁾.

Abbild. 4 zeigt die IR-Spektren des unmarkierten und des ¹⁵N-substituierten Tosylamids. Man erkennt, daß unterhalb von 1000/cm nur die mittelstarke Bande bei 907/cm deutlich bei der ¹⁵N-Markierung verschoben wird (um 12/cm). Sie läßt sich daher eindeutig als S-N-Valenzschwingung ansprechen. Daß sie auch bei der Deuterierung eine starke Frequenzerniedrigung (47/cm) erfährt, bestätigt diese Zuordnung.

^{*)} In C₂Cl₄ (4000 bis 1360/cm) bzw. in CS₂ (1360 bis 400/cm).

¹³⁾ Y. Tanaka und Y. Tanaka, Chem. pharmac. Bull. [Tokyo] 13, 1374 (1965); dort Hinweise für frühere Untersuchungen.

^{14) 14}a) R. Kübler, W. Lüttke und S. Weckherlin, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 64, 650 (1960); 14b) S. Weckherlin und W. Lüttke, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 64, 1228 (1960).


Tab. 3. IR-Spektren von p-Toluolsulfonamid und von $\dot{N}.N$ -Dideutero-p-toluolsulfonamid (ν Frequenz, I geschätzte Intensität, $\Delta \nu$ Frequenzverschiebung bei ¹⁵N-Markierung)

,	•	•	-			•		•		-		•
	ensior		₄ —SO ₂ N Lös ν [cm ⁻¹	ung+)		p-H ₃ C- Suspensi ν [cm ⁻¹	ion*)	Lösung V [cm ⁻¹]	(++)		Zuordnur	ng
459 470	1 1	0 1				452 470 480	3 sh 0				δ _X Γ	B ₁ B ₂
533 557	8 7	3 1	542 557	7 7	3 2	530 560 587	5 7 s. b.				$\begin{array}{l} \rho(\mathrm{SO}_2) \\ \delta(\mathrm{SO}_2) \\ \gamma(\mathrm{ND}_2) \end{array}$	
634 * 669	*)	2	663	6	3	640 670	sh 9				$\omega_{\mathbf{X}}$	B_1 A_1
					,	070						, • [
~680 705 796 810 843	s. b 6 2 8 1	1 1 1	~680 707 800 815	s. b. 4 sh 4	1 0 0	705 798 808 843	2 sh 7 2				γ(NH ₂) Γ ωχ γ(CH) γ(CH)	B ₂ A ₁ B ₂ A ₂
907 914	6 sh	12	894	6	11	860	8				v(SN)	-
954	1					955	1				γ(CH)	\mathbf{B}_2
966 1016 1041	1 3 1	0 0 0	1018 1041	2 1	0	966 1016 1039	1 2 1	1018 1038	2 1		γ(CH) δ(CH) ρ(CH ₃)	A ₂ A ₁
1094 1120 1152	7 3 10	1 0 1	1095 1119	4 2	0	1089 1120 1149	7 3 10	1093 1117 1147	4 2 sh	1	ωχ δ(CH)	A_1 B_1
1172 1184	8 6	0	1165 1187	10 3	1 0	1160 1182	9 4	1164 1182	8 4	}	$v_s(SO_2)$ $\delta(CH)$	\mathbf{A}_1
1210 1287 1303 1312 1325	1 4 6 sh 10	2 0 0 0 0	1210 1290 1306	1 2 3	2 0 0	1191 1209 1292 1303 1311 1321	8 sh 4 7 sh 10	1187 1209 1288 1304	3 1 2 3		$\delta(ND_2)$ ω_X ω $\delta(CH)$ $470+843$ $v_{as}(SO_2)$	A_1 B_1 B_1 = 1313
1368 1400	0	0	1400	2	0	1372 1400	1 2	1395	2		$\delta_s(CH_3)$ ω	B_i
1415	0		1410 1443	sh 1	0	1415	2	1443	1	}	ν _{as} (CH ₃)	
1495 1573	2 5	0 6	1497 1545	3 5	0 7	1492	2	1494	2	,	ω $\delta(NH_2)$	\mathbf{A}_1
1595 1647 1801 1914	4 1 1 1	0 0 0	1600 1646 1801 1914	4 0 1 1	0 2 1	1597 1642 1800 1915	4 1 1	1597 1640 1795 1913	4 0 0 1		ω 810+843 843+966 955+966	5 = 1809
						2323 2344 2403 2437	6 sh 7 3	2430 2447	sh 4		$v(ND_2)$	= 2382? 303 = 2342 o.a 27 = 2440 o.a.
						2492	8	2503	2	}	$\nu(ND_2)$	
2850 2920	0 I	0	2860 2920	1 2	0	2850 2918	0 1	2570 2860 2920	3 1 2	}	ν(CH ₃)	

	nsion	*)	4—SO ₂ N Lös ν [cm ⁻	ung		p-H ₃ C- Suspensi v [cm ⁻¹	on *)		ıg++)	Zuordnung
3030	1		3030	1		3029	1	3029	1)
3043	ī		3045	0		3043	Ō		-	(0.75)
3060	0		3060 3085	I sh		3060	Ŏ	3060	sh	ν(CH)
3120	6	8								$2 \cdot 1573 = 3146$
3238	10	8				3239	0			}
			3280	4	2	32 83	1			(NIII)
3325	9	7				3324	0			$\nu(NH_2)$
			3346	6	4					bzw. v(NHD)
			3444	6	4]

Tab. 3. (Fortsetzung)

^{**)} Negative Bande, vgl. Erläuterungen im Text.

Abbild. 4. IR-Spektren von p-Toluolsulfonamid und von [15N]-p-Toluolsulfonamid, in Nujol/Hostaflon

Im Bereich der NH₂-Valenzschwingungen treten drei Banden auf (in Hostaflonöl-Suspension: 3120, 3238 und 3325/cm), die sämtlich einen ¹⁵N-Isotopieeffekt von 7 bis 8/cm aufweisen und bei der deuterierten Substanz bei 2323, 2403 und 2492/cm erscheinen. In den Lösungsspektren erscheinen ebenfalls jeweils drei Banden, doch sind diese gegenüber den festen Substanzen um mehr als 100/cm nach höheren Frequenzen verschoben. Für die Festkörper kann man die jeweils längstwellige Bande auf einen Oberton der NH₂- bzw. der ND₂-Deformationsschwingung (2·δ(NH₂) bzw. 2·δ(ND₂)) zurückführen; in Lösung gehören alle drei Banden zu Schwingungen von über Wasserstoff-Brücken assoziierten bzw. nicht assoziierten Molekülen (vgl. hierzu z. B. *Baxter* et al. ¹⁵⁾).

Die ebene NH_2 -Deformationsschwingung, $\delta(NH_2)$, des Tosylamids liegt bei 1573/cm (in Hostaflonöl-Suspension). Man erkennt sie an ihrer ¹⁵N-Verschiebung um 6/cm. Bei der deuterierten Substanz fehlt diese Bande, dafür tritt eine neue, $\delta(ND_2)$, bei 1191/cm auf.

^{*)} In Hostaflonöl (4000 bis 1310/cm) bzw. in Nujol (1310 bis 400/cm).

⁺⁾ In CDCl₃ (4000 bis 970/cm) bzw. in Essigsäure-äthylester (970 bis 400/cm).

⁺⁺⁾ In CDCl₃.

¹⁵⁾ J. N. Baxter, J. Cymerman-Craig und J. B. Willis, J. chem. Soc. [London] 1955, 669.

γ(NH₂)-Frequenzen sind beispielsweise für Formamid ¹⁶ (ca. 750/cm), für Acetamid ¹⁷ (ca. 700/cm), für Benzamid ¹⁴ b) (656/cm) und für Sulfamid ¹⁸) (720/cm) bekannt. Die betreffenden Banden zeichnen sich durch ungewöhnlich große Halbwertsbreiten (oft mehr als 100/cm) aus. Bei Tosylamid macht sich die entsprechende Bande als sehr breite Absorption im Untergrund des Bereichs 570 bis 780/cm mit einem Maximum bei etwa 680/cm bemerkbar, der eine ähnliche Bande bei 587/cm des *N.N*-Dideutero-tosylamids entspricht.

Die NH₂-Pendelschwingung, $\rho(NH_2)$, sollte in Analogie zu anderen NH₂-Verbindungen ¹⁴b, ¹⁶⁻¹⁸) etwa zwischen 1000 und 1200/cm zu suchen sein. Für das Tosylamid läßt sich jedoch weder durch die ¹⁵N-Markierung noch mit Hilfe der Deuterierung eine entsprechende Bande auffinden. Wahrscheinlich ist die fragliche Bande sehr intensitätsschwach, so daß sie neben den anderen starken Absorptionen dieses Bereichs nicht zu erkennen ist. Auch für die $\tau(NH_2)$ -Schwingung, die Torsion um die Winkelhalbierende der HNH-Gruppe, konnte keine Bande aufgefunden werden.

In der Nachbarschaft der sehr breiten $\gamma(NH_2)$ -Bande tritt bei 634/cm eine relativ scharfe "negative" Bande auf, deren Maximum also wie bei einer Emissionsbande nach "oben" zeigt. Ähnliches beobachtet man auch bei anderen Substanzen (vgl. Nonnenmacher³b)). Evans und Wright 19) führen diesen Effekt auf Resonanzabstoßung einer scharfen und einer unscharfen Bande, die ursprünglich zusammenfallen, zurück, wobei die scharfe in der unscharfen Bande eine Lücke hinterläßt. Die scharfe Bande dürfte in unserem Falle von einer Ringschwingung des Benzolkerns herrühren.

4) N-Methyl-p-toluolsulfonamid

 $Had\check{z}i^{20}$ konnte aufgrund von Deuterierungsversuchen für N-Methyl-p-toluolsulfonamid die ebene Deformationsschwingung der NH-Gruppe sowie die C-N- und die S-N-Valenzschwingung identifizieren: $\delta(NH)=1410/\text{cm}$, $\nu(C-N)=1060/\text{cm}$ und $\nu(S-N)=839/\text{cm}$. Für N-Methyl-N- deutero-p-toluolsulfonamid fanden wir die entsprechenden Banden bei 1217/cm ($\delta(ND)$), 916/cm ($\nu(C-N)$) und 789/cm ($\nu(S-N)$).

Die nicht-ebene Deformationsschwingung, γ(NH), ist in Analogie zu sekundären Amiden²¹⁾ als breite Bande mittlerer Intensität zwischen 650 und 800/cm zu erwarten. Hierzu paßt eine breite Bande, deren Maximum sich als Schulter bei etwa 670/cm lokalisieren läßt und die bei der Deuterierung verschwindet (Abbild. 5). Allerdings kann eine entsprechende Absorption für die deuterierte Substanz nicht gefunden werden.

¹⁶⁾ I. Suzuki, Bull. chem. Soc. Japan 33, 1359 (1960).

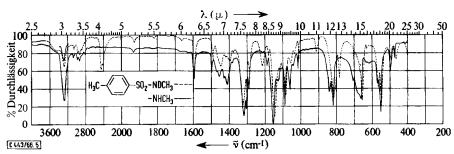
¹⁷⁾ I. Suzuki, Bull. chem. Soc. Japan 35, 1279 (1962).

¹⁸⁾ I. W. Herrick und E. L. Wagner, Spectrochim. Acta [London] 21, 1569 (1965); vgl. auch H. Spiesecke, Dissertat., Univ. Freiburg/Brsg. 1958.

¹⁹⁾ J. C. Evans und N. Wright, Spectrochim. Acta [London] 16, 352 (1960).

²⁰⁾ D. Hadži, J. chem. Soc. [London] 1957, 847.

²¹⁾ T. Miyazawa, T. Shimanouchi und S. I. Mizushima, J. chem. Physics 24, 408 (1956).


Tab. 4. IR-Spektren von N-Methyl-p-toluolsulfonamid und von N-Methyl-N-deutero-p-toluolsulfonamid (I geschätzte Intensität)

p-H ₃ C		– SO ₂ NH (Lösun		p-H ₃ C- fest in		−SO ₂ NDO		Zuord	Iniing
ν [cm ⁻¹		ν [cm ⁻¹		ν [cm ⁻¹]		ν [cm ⁻¹]		24010	ung
471	1	472	1	469	2	463	1	$\delta_{\mathbf{X}}$	$\mathbf{B_{l}}$
495	2	490	i	495	2	495	1	$\overset{\mathtt{o}_{\mathbf{X}}}{\Gamma}$	\mathbf{B}_2
550	8	550	8	553	8	550	8		D 2
								$\rho(SO_2)$	
565	3	569	4	568	6	564	5	$\delta(SO_2)$	_
634	1			634	1			ω	${f B_1}$
663	6	666	6	663	7	659	7	ωχ	\mathbf{A}_1
670	s. b .	670	s.b.					γ(NH)	
707	3	705	2	705	2	704	2	Γ	B_2
				789	5	780	4	v(SN)	
810	sh	789	2	811	6	812	5	` '	٨
								ωχ	$\mathbf{A_1}$
821	7	822	7	822	.7	822	7	γ(CH)	\mathbf{B}_2
	-		-	825	sh				
838	5	829	5					v(SN)	
848	sh	840	sh	845	sh			γ(CH)	A_2
				916	2	900	2	v(N − C	CH ₃)
957	1	950	0	957	1			γ(CH)	\mathbf{B}_{2}
974	1			974	1			(CII)	
		1010	•			1010	•	γ(CH)	A_2
1018	2	1018	2	1018	2	1019	2	δ(CH)	A_1
1042	2	1042	sh	1042	2	1037	1		$-C_6H_4$)
1062	5	1069	3					ν(Ñ-C	CH ₃)
1067	sh							ρ(H ₃ C-	N)
1090	7	1093	5	1090	7	1093	4	ωχ	$\mathbf{A_1}$
				1104	sh	1106	3	ρ(H ₃ C	
1121	1	1116	1	1123	3	1117	sh	δ(CH)	\mathbf{B}_1
	_								
1128	2	1135	sh					ρ(H ₃ C	− N)
1156	10	1163	10	1154	10	1160	10	$v_s(SO_2)$)
1187	2	1183	2	1186	2	1182	2	δ(CH)	\mathbf{B}_{1}
1213	1	1210	1					ωχ	\mathbf{A}_1
				1217	4	1221	4	δ(ND)	•
1290	5	1288	2	1290	5	1287	2	ω	\mathbf{B}_1
1308	7	1304	3	1307	7	1304	3	δ(CH)	\mathbf{B}_{1}
1316	8	1331	9	1327	ģ	1335	9	vas(SO	
1310	o	1331	,	1321	,	1353	7	Vas(BO	2)
1380	1	1381	sh	1377	1	,	•	$\delta_s(H_3C)$	$C-C_6H_4$)
1400	sh			1393	2			•	\mathbf{B}_{1}
		1202	5	1373	2			ω %(\$111)	Βl
1409	4	1392	. 5	1.430	~			δ(NH)	
1426	3	1422	sh	1420	2				
1450	sh	1448	2	1448	3			$\delta(CH_3)$	1
1453	3	1 45 6	sh	1453	sh				,
1468	2			1465	sh			J	
1495	2	1493	2	1495	2	1493	2	ω	A_1
1596	3	1597	3	1596	3	1597	3	ω	\mathbf{B}_1 (\mathbf{A}_1)
1665	0			1665	1			821 ⊥ 8	348 = 1669
. 505	·			2355	sh				393 = 2367
				2410	3				1290 = 2411
					4	2510	2		
				2447	4	2510	2	v(ND)	

		-SO ₂ NH				-SO ₂ ND	CH ₃	
fest in	KВr	Lösun	g*)	fest in	KBr	Lösun	g*)	Zuordnung
ν [cm ⁻¹] [ν [cm ⁻¹]	I	ν [cm ⁻¹]] [ν [cm ⁻¹]	I	
2815	1	2815	1	2810	1	2810	1	<u> </u>
2860	sh	2860	sh	2860	sh	2858	sh	
2870	2	2890	i	2890	1	2880	1	
2898	1							$\nu(CH_3)$
2930	3	2920	3	292 3	3	2915	1	
2945	sh			2947	sh	2932	1	
2980	3	2970	3	2975	3	2967	2	J
3050	1			3045	sh	3040	1)
3067	2			3060	2	30 5 9	i	ν(C H)
3085	1			3080	0) ` '
3280	10	3286	5	3275	3			v(NH) asso:
		3382	2					v(NH) frei

Tab. 4 (Fortsetzung)

Im Bereich der NH-Valenzschwingungen findet man für den Kaliumbromid-Preßling eine Bande mit relativ großer Halbwertsbreite bei 3280/cm, die zu assoziierten NH-Gruppen gehört. In Lösung tritt zusätzlich bei 3382/cm die Bande der nicht mehr assoziierten, "freien" Moleküle auf. Die entsprechenden Banden des Deuteroamids werden bei 2447 und 2510/cm beobachtet.

Abbild. 5. IR-Spektren von N-Methyl-p-toluolsulfonamid und von N-Methyl-N-deutero-p-toluolsulfonamid, in KBr

Gegenüber dem unsubstituierten Tosylamid treten zusätzlich einige weitere Banden auf, die als innere Schwingungen der *N*-Methylgruppe anzusehen sind. Es sind dies für den KBr-Preßling: 2980 und 2870/cm (ν (CH₃)), 1468, 1453 und 1426/cm (δ (CH₃)) sowie 1128 und 1067/cm (ρ (CH₃)).

Eine Aufstellung der für N-Methyl-p-toluolsulfonamid und für N-Methyl-N-deutero-p-toluolsulfonamid beobachteten Banden sowie deren Zuordnung gibt Tab. 4.

5) N.N-Dimethyl-p-toluolsulfonamid

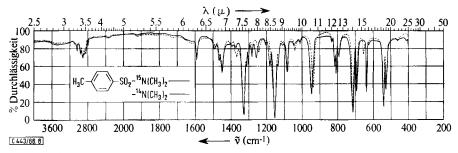
Um bei dieser Substanz die Schwingungen der Dimethylaminogruppe neben denen des Tosylrestes mit Sicherheit aufzufinden und zu charakterisieren, untersuchten wir die folgenden Isotopisomeren:

$T_S - N(CH_3)_2$	Α	$T_{S} - N^{13}CH_{3}^{12}CH_{3}$	C
$T_{s}-15N(CH_{3})_{2}$	В	$T_S - N(CD_3)_2$	D

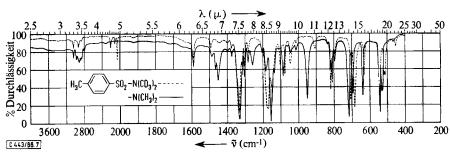
^{*)} In CS₂ (4000 bis 2600/cm; 1370 bis 400/cm) bzw. in CDCl₃ (2600 bis 1370/cm).

Tab. 5. IR-Spektren von N.N-Dimethyl-p-toluolsulfonamid und von N.N-Bis-trideuteromethyl-p-toluolsulfonamid

(v Frequenz, I geschätzte Intensität, $\Delta v^{15}N$ Frequenzverschiebung bei ^{15}N -Markierung, $\Delta v^{13}C$ Frequenzverschiebung bei ^{13}C -Markierung der Dimethylaminogruppe)


	fest	o-H ₃ C – C		Lö	sung	*)	fest in	KBr	Lösur	ıg *)	⁽³⁾ 2 Zuordnung
ν [cm ⁻	1] I	$\Delta v^{15}N$	7013C	ν [cm ⁻¹] /	Δ012ΙΛ	ν [cm ⁻¹] [ν [cm ⁻¹	·] <i>I</i>	
474	1 4	1	1	471	1	2	463 522	1 4	460	1	$\delta_{\mathbf{X}}$ \mathbf{B}_1
535 538	4	3	0	534	5	3	522 526	4	520	4	$\rho(SO_2)$
549	8	ő	v	549	8	0	549	8	549	8	$\delta(SO_2)$
636	1	0	0				636	sh			ω B ₁
648	6	0	0	646	6	1	639	5	636	5	$\omega_{\mathbf{X}}$ \mathbf{A}_1
703	6	1	1	700	6	1	693	9	688	9	Г В2
725	9	1	2	720	9	1	715	8 2	711	7 2	, -
802 817	4	0 0	0	800		0	802		800		$\omega_{\mathbf{X}}$ \mathbf{A}_1
826	3	ő	ő	814	5	0	816	4	814	6	γ (CH) \mathbf{B}_2
							826	5	823	5	$v(S-N(CD_3)_2)$
841	1	0	0				846	1			γ (CH) A_2
	_				_		914	2	915	2	(0 N/OTT)
957 1018	7 1	10 0	5 0	955	7	10	1018	1			$v(S-N(CH_3)_2)$
1024	i	0	0	1019	1	0	1018	ì	1019	1	$\delta(CH)$ A_1
1040	sĥ	·	·	1040	sh		1040	sĥ			$\rho(H_3C-C_6H_4)$
							1049	sh	1048	sh	$\delta_{\rm s}({\rm CD_3})$
1053	2	4	4	1053	2	4					$N(CH_3)_2$
	_						1055	3	1055	2	$\delta_{as}(CD_3)$
1092	3	0	0	1092	3	0	1084 1110	3	1082 1108	2 2	$\omega_{\mathbf{X}} = \mathbf{A}_1$ $\delta_{\mathbf{a}\mathbf{s}}(\mathbf{C}\mathbf{D}_3)$
1120	1	2	0	1115	1	0	1110	3	1100	2	$\delta(CH)$ B_1
1143	3	4	2	1144	2	4					$N(CH_3)_2$
							1156	6	1155	6	$N(CD_3)_2$
1161	10	0	1	1165	10	0	1179	10	1178	10	$v_s(SO_2)$
1183	sh	1	0	1183	2	0			1183	sh	$\delta(CH)$ A_1
1188 1211	3	>9 0	5 0	1192 1211	2 1	9 0	1211	1	1211	1	N(CH ₃) ₂
1264	3	15	4	1264	3	13	1211	1	1211	1	ω_X A_1 $N(CH_3)_2$
1287	2	ő	ó	1288	ī	0	1287	2	1287	1	ω B_1
1307	3	0	0	1304	3	0	1307	3	1304	3	δ(CH) B ₁
1310	2	0	0	1501	,	Ū	1310	2	150.) ((21)
1321	2	1	0	1337	sh	_	1324	3	1338	sh	(00.)
1335	9	0	0	1352	9	0	1338	9	1355	9	$v_{as}(SO_2)$
1381 1400	1 1	0	0	1376 1 40 0	1 sh	0	1381 1398	1 1	1376 1396	1 1	$\delta_{\rm s}({\rm H}_3{\rm C}-{\rm C}_6{\rm H}_4)$ ω B_1
1448	sh	ő	ő	1453	sh	ŏ	1448	1	1450	2	$\delta_{as}(H_3C-C_6H_4)$
1455	3	Ō	1	1460	3	0					$\delta_{as}(H_3C-N)$
1471	2	3	1	1472	2	3) das(113C-14)
1494	2	0	0	1495	2	0	1495	2	1494	2	ω Α ₁
1595	3	0	0	1599	3	0	1595	2	1599	2	ω B_1 (A_1)
							2062 2116	1	2063 2123	3 1	$ \nu_{s}(CD_{3}) $ $ \nu_{as}(CD_{3}) $
							2206	2	2207	2	$\nu_{as}(CD_3)$
2792	1	0	0	2795	1	0					$v_s(H_3C-N)$
2805 2840	1 2	0 0	0	2835	2	0	2845	1	2855	1	$v_s(H_3C-C_6H_4)$
2040	2	U		2033	4	U	2073		2000	•	79*

	_	
ТоЬ	-	(Fortsetzung)


		-H ₃ C – in KBr		SO₂N(C Lö		2 *)			H ₄ —SO ₂ Lösun		O ₃) ₂ Zuordnung
ν [cm ⁻	-1] <i>I</i>	$\Delta v^{15}N$	$\Delta v^{13}C$	ν [cm ⁻¹] [$\Delta v^{15}N$	ν [cm ⁻¹] [ν [cm ⁻¹] [
2870	3	0	5	2870	2	0					vas(H ₃ CN)
2915	2	0	0	2920	2	0	2918	3	2918	2	$v_{as}(H_3C-C_6H_4)$
2960	3	2	2	2960	3	1					$v_{as}(H_3C-N)$
3030	2			3030	0		3030	2)
3040	sh			3040	0		3040	sh) } v(CH)
3055	sh			3060	0		3055	sh	3060	1	} V(CH)
3080	1			3075	0		3080	1	3080	0	J

^{*)} In C₂Cl₄ (4000 bis 1380/cm) bzw. in CS₂ (1380 bis 400/cm).

Die Abbildungen 6 und 7 zeigen die IR-Spektren von A, B und D; in Tab. 5 ist das spektroskopische Untersuchungsmaterial zusammengestellt.

Abbild. 6. IR-Spektren von N.N-Dimethyl-p-toluolsulfonamid (A) und von N.N-Dimethyl[15N]-p-toluolsulfonamid (B), in KBr

Abbild. 7. IR-Spektren von N.N-Dimethyl-p-toluolsulfonamid (A) und von N.N-Bis-tri-deuteromethyl-p-toluolsulfonamid (D), in KBr

Die Banden der Valenz- und der Deformationsschwingungen der beiden N-Methylgruppen lassen sich in den für sie charakteristischen Bereichen auffinden (Zuordnung siehe Tab. 5). Mit Hilfe der deuterierten Verbindung D lassen sie sich sogar von den entsprechenden Absorptionen der ringständigen Methylgruppe unterscheiden, da letztere auch im Spektrum von D auftreten (siehe Abbild. 7). Zu den Valenzschwingungen der Deuteromethylgruppen gehören die Banden bei 2206, 2116 und 2062/cm; den CD₃-Deformationsschwingungen lassen sich die Absorptionen bei 1110, 1055 und 1049/cm (sämtlich in KBr) zuordnen.

Mit ihren relativ großen ¹⁵N- und ¹³C-Isotopieverschiebungen (siehe Tab. 5) weisen sich auch die Banden bei 1264, 1188, 1143 und 1053/cm als innere Schwingungen der Dimethylaminogruppe aus: Sie sind auf die symmetrische und die antisymmetrische NC₂-Valenz- sowie auf die CH₃-Pendelschwingungen zurückzuführen, die erfahrungsgemäß sehr stark miteinander koppeln und daher hier nicht näher klassifiziert werden können. Ähnlichen Ursprungs dürfte bei der deuterierten Substanz die Bande bei 1156/cm sein.

Die Bande bei 957/cm weist eine 15 N-Verschiebung von 10/cm auf. Sie ist daher, wie auch aufgrund ihrer Form, Intensität und Frequenzlage der S-N-Valenzschwingung zuzuordnen. Daß an dieser Schwingung aber auch die C-Atome der Methylgruppen wesentlich mitbeteiligt sind, erkennt man an ihrer 13 C-Verschiebung um 5 /cm, was besagt, daß die 5 0 die 5 1 schwingung mit einer 5 2 schwingung gekoppelt ist.

In der deuterierten Substanz findet man die entsprechende Bande bei 826/cm (in KBr) bzw. bei 823/cm (in Lösung). Sie ist im Spektrum des KBr-Preßlings zwar frequenzgleich mit einer schwächeren Absorption der einfachen Substanz A, doch zeigen die Lösungsaufnahmen eindeutig, daß letztere von einer Kristallfeldaufspaltung der γ (CH)-Schwingung herrührt. Denn anstelle des Bandenpaares bei 817 und 826/cm der KBr-Preßlinge von A, B und C zeigen die Lösungsaufnahmen dieser Substanzen nur eine Bande erhöhter Intensität bei 814/cm. Eine ähnliche Aufspaltung zeigen auch die Banden der ρ (SO₂)- bei 534/cm sowie der δ (CH)-Schwingungen bei 1019 und 1304/cm (sämtlich in Lösung).

Schwierigkeiten bereitet die Zuordnung der Banden im Bereich 750 bis 600/cm. In Analogie zu den bereits behandelten Tosylderivaten sind hier drei Aromaten-Absorptionen zu erwarten, nämlich eine ebene Ringschwingung ω der Klasse B_1 , eine substituentenempfindliche Ringschwingung ω_X der Klasse A_1 sowie eine nichtebene Ringschwingung Γ der Klasse B_2 . Beobachtet werden jedoch vier Banden. Die Vermutung, eine dieser Banden sei einer inneren Schwingung der Dimethylaminogruppe zuzuschreiben, wird dadurch gegenstandslos, daß keine dieser Banden einen nennenswerten ^{15}N - oder ^{13}C -Effekt aufweist. Selbst bei der Deuterierung werden sie nur um maximal 12 /cm verschoben.

Daß die sehr schwache Bande bei 636/cm tatsächlich zu einer Grundschwingung gehört und keinen Ober- oder Kombinationston darstellt, folgt zwangsläufig daraus, daß bei den anderen Tosylderivaten an dieser Stelle mit einer Variationsbreite von nur 4/cm ebenfalls eine schwache IR-Absorption auftritt, der — wie orientierende Messungen zeigten — stets eine depolarisierte Raman-Bande mittlerer Intensität entspricht. Ihre Zuordnung als ebene Ringschwingung der Klasse B₁ ist damit gesichert.

Wie der Vergleich mit den Spektren der anderen Tosylderivate zeigt, gehört die Bande bei 703/cm zur nicht-ebenen Ringschwingung Γ (B₂), während der substituentenempfindlichen Ringschwingung ω_X (A₁) am ehesten die Bande bei 648/cm entsprechen dürfte.

Damit bleibt die vierte Bande dieses Bereichs, die sehr starke Absorption bei 725/cm, unzugeordnet. Es scheint möglich, daß sie ihre Existenz einer "Ortho-CH-Störung"²²)

²²⁾ W. Lüttke, Liebigs Ann. Chem. 668, 184 (1963).

verdankt, einem Effekt, der als Erklärung für die unerwartete Vermehrung der Banden bestimmter Monoderivate des Benzols angegeben worden war, bei denen der Substituent die coplanare Einstellung von Phenylring und Substituent stört.

Die Banden im Spektrum des N.N-Dimethyl-[15N]-p-toluolsulfonamids (Abbild. 6) bei 663 und 1372/cm sind auf Verunreinigungen zurückzuführen, die sich auch durch nochmaliges Umkristallisieren nicht entfernen ließen. Erwähnenswert ist noch, daß die $v(SO_2)$ -Schwingungen des N.N-Bis-trideuteromethyl-p-toluolsulfonamids um 18 (v_s) bzw. um 3/cm (v_{as}) kürzerwellig liegen als in der "leichten" Verbindung.

Zum Schluß sei noch in Tab. 6 eine Übersicht über die von der Substituentenmasse abhängigen Ringschwingungen ω_X sowie über die inneren Schwingungen der SO_2R -Gruppen gegeben.

_					
Ta	ab. 6. Si	ubstituentenempfindli SO ₂ R-Grupper	iche Ringschwir n der Verbindu		gungen der

R	Cl	OCH ₃	NH ₂	NHCH ₃	N(CH ₃) ₂
ωχ	280 *)	291 **)	286 **)	289 **)	291 **)
ωχ	652	660	669	663	648
ωχ	796	818	796	810	802
ωχ	1079	1097	1094	1090	1092
$\omega_{\mathbf{X}}$	1210	1210	1210	1213	1211
$\nu_{s}(SO_{2})$	1174	11 7 7	1165	1156	1161
ν(SR)	373*)	766	907	838	957
$\delta(SO_2)$	567	565	557	565	549
$v_{as}(SO_2)$	1372	1359	1325	1316	1335
$\rho(SO_2)$	530	554	533	550	534

^{*)} Raman-Banden von Ham und Hambly 12).

Wir danken Herrn Dr. E. Ziegler (Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr) sehr herzlich für die sorgfältige Ausführung der Raman-Messungen. Der Deutschen Forschungsgemeinschaft, Bad Godesberg, dem Fonds der Chemischen Industrie, Düsseldorf, sowie der Badischen Anilin- & Soda-Fabrik AG, Ludwigshafen, sind wir für die Förderung dieser Arbeiten durch Sachbeihilfen zu besonderem Dank verpflichtet.

Beschreibung der Versuche

Die IR-Spektren wurden mit einem Perkin-Elmer IR-Gitterspektrometer, Modell 125, aufgenommen. Für die Raman-Messungen diente ein Cary-Spektrometer, Modell 81.

Die unmarkierten Substanzen waren Handelsprodukte, oder sie wurden nach bekannten Methoden dargestellt.

Die Identität der markierten Substanzen wurde durch wiederholte Erprobung des Syntheseweges mit unmarkierter Substanz sichergestellt.

[15N]-p-Toluolsulfonamid kann man auf einem von Heath und Dutton²³⁾ angegebenen Weg gewinnen. Für kleinere Ansätze erwies sich folgendes Verfahren als zweckmäßig: 600 mg

^{**)} Raman-Messungen von E. Ziegler.

²³⁾ D. F. Heath und A. Dutton, Biochem. J. 70, 619 (1958).

(3.15 mMol) p-Toluolsulfochlorid, 88 mg (1.61 mMol) [15N]Ammoniumchlorid (95 Atom-% 15N, Isomet Corporation, Palisades Park, N. Y./USA) und 800 mg KHCO3 wurden in 10 ccm Wasser langsam auf 60° erwärmt. Unter CO2-Entwicklung begann die Reaktion, ohne daß zunächst das Säurechlorid schmolz. Nach Beendigung der Gasentwicklung wurde langsam auf etwa 125° Badtemperatur geheizt und das Reaktionsgemisch bis zur vollständigen Hydrolyse des Sulfochlorids unter Rückfluß gekocht (etwa 2 Stdn.). Man ließ über Nacht stehen, saugte das in langen Nadeln anfallende Amid ab, wusch mit einigen Tropfen kalten Wassers und trocknete i. Vak. über P2O5. Ausb. 176 mg (64%, bez. auf [15N]Ammoniumchlorid). Reinigung erfolgte durch Umkristallisieren aus Wasser.

N.N-Dimethyl- (^{15}N) -p-toluolsulfonamid: Aus 700 mg (4.06 mMol) (^{15}N) -p-Toluolsulfonamid wurden durch Methylieren mit Dimethylsulfat nach Heath und Dutton²³⁾ 710 mg N.N-Dimethyl- (^{15}N) -p-toluolsulfonamid (88%) erhalten. Reinigung erfolgte durch Umkristallisieren aus Petroläther (85 – 100°).

N-Methyl-N- $[^{13}C$ -methyl]-p-toluolsulfonamid: 600 mg (4.21 mMol) $[^{13}C]$ Methyljodid (53.4 Atom-% ^{13}C , Merck, Sharp & Dohme of Canada Ltd., Montreal/Canada), 800 mg (4.32 mMol) N-Methyl-p-toluolsulfonamid, 270 mg KOH und 10 ccm 70-proz. wäßr. Äthanol wurden in einer Bombe aus Pyrexglas 7 Stdn. im Tetrachlorkohlenstoffbad auf 76° erhitzt. Nach dem Abkühlen spülte man das Gemisch mit etwas wäßr. Äthanol in ein Kölbchen und engte dann so weit ein, daß die Lösung kaum noch Äthanol enthielt. Den Rückstand versetzte man mit 25 ccm ^{3}n NaOH und extrahierte mit 40 ccm Benzol. Von der benzolischen Lösung wurde nach Waschen mit 10 ccm ^{3}n NaOH und Trocknen über Na 2 SO 4 das Benzol abdestilliert. Ausb. 7 60 mg (9 2%, bez. auf [13 C]Methyljodid). Die Reinigung der Substanz erfolgte durch Umkristallisieren aus Petroläther (8 5 – 10 0°).

N.N-Bis-trideuteromethyl-p-toluolsulfonamid: 1.342 g (9.25 mMol) Trideuteromethyljodid (99.5 Atom-% Deuterium, Merck, Sharp & Dohme of Canada Ltd., Montreal/Canada) und eine Lösung von 720 mg (4.20 mMol) p-Toluolsulfonamid und 650 mg KOH in 7 ccm 70-proz. wäßr. Äthanol wurden in einer Bombe aus Pyrexglas 48 Stdn. auf 100° erhitzt. Aus dem mit 50 ccm 2n NaOH verdünnten Reaktionsgemisch wurde das Produkt mit Benzol extrahiert und nach Abdampfen des Solvens aus Petroläther (85–100°) umkristallisiert. Rohausb. 549 mg (59%, bez. auf Trideuteromethyljodid).

N.N-Dideutero-p-toluolsulfonamid und N-Methyl-N-deutero-p-toluolsulfonamid wurden durch dreimaliges Umkristallisieren der "leichten" Verbindungen aus D_2O bzw. $D_2O/Dioxan$ und anschließendem Trocknen i. Hochvak. gewonnen.

[443/66]